Constraint Preserving Schemes Using Potential - Based Fluxes . Iii . Genuinely Multi - Dimensional Schemes for Mhd Equations ∗
نویسندگان
چکیده
We design efficient numerical schemes for approximating the MHD equations in multidimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multidimensional (GMD) framework of [31, 32]. The schemes are formulated in terms of vertex-centered potentials. A suitable choice of the potential results in GMD schemes that preserve a discrete version of divergence. Firstand second-order divergence preserving GMD schemes are tested on a series of benchmark numerical experiments. They demonstrate the computational efficiency and robustness of the GMD schemes. Résumé. ... AMS Subject Classification. 65M06,35L65.
منابع مشابه
Constraint Preserving Schemes Using Potential - Based Fluxes . Iii . Genuinely Multi - Dimensional Schemes for the Mhd Equations ∗
We design efficient numerical schemes for approximating the MHD equations in multidimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multidimensional (GMD) framework of [31, 32]. The schemes are formulated in terms of vertex-centered potentials. A suitable choice ...
متن کاملConstraint Preserving Schemes Using Potential - Based Fluxes . Iii . Genuinely Multi - Dimensional Schemes
We design efficient numerical schemes for approximating the MHD equations in multidimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multidimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM...
متن کاملPotential based , constraint preserving , genuinely multi - dimensional schemes for systems of conservation laws Siddhartha Mishra
We survey the new framework developed in [33, 34, 35], for designing genuinely multi-dimensional (GMD) finite volume schemes for systems of conservation laws in two space dimensions. This approach is based on reformulating edge centered numerical fluxes in terms of vertex centered potentials. Any consistent numerical flux can be used in defining the potentials. Suitable choices of the numerical...
متن کاملPotential based, constraint preserving, genuinely multi-dimensional schemes for systems of conservation laws
We survey the new framework developed in [33, 34, 35], for designing genuinely multi-dimensional (GMD) finite volume schemes for systems of conservation laws in two space dimensions. This approach is based on reformulating edge centered numerical fluxes in terms of vertex centered potentials. Any consistent numerical flux can be used in defining the potentials. Suitable choices of the numerical...
متن کاملConstraint Preserving Schemes Using Potential-based Fluxes. Ii. Genuinely Multi-dimensional Central Schemes for Systems of Conservation Laws
We propose an alternative framework for designing genuinely multi-dimensional (GMD) finite volume schemes for systems of conservation laws in two space dimensions. The approach is based on reformulating edge centered numerical fluxes in terms of vertex centered potentials. Any consistent numerical flux can be used to define the potentials. Suitable choices of potentials result in schemes that p...
متن کامل